

Provided to you by:

Degree Days for Common Fruit and Vegetable Insect Pests

Karen Delahaut, UW-Madison Fresh Market Vegetable Program

COMMON VEGETABLE INSECTS THAT CAN BE MONITORED USING DEGREE DAYS OR INDICATOR PLANTS

Cabbage Maggot

Base temperature = 43°F 300, 1476, 2652 DD₄₃ for 1st, 2nd, & 3rd generations flies 1st generation eggs are laid when the common lilac is in full bloom

Colorado potato beetle, 1st generation

Base temperature = 50° F Begin counting when first eggs appear 1^{st} instar larva at 185 DD₅₀ 2^{nd} instar larva at 240 DD₅₀ 3^{rd} instar larva at 300 DD₅₀ 4^{th} instar larva at 400 DD₅₀ Pupa at 675 DD₅₀

Common Asparagus Beetle

Base temperature = 50°F Egg laying at 150 – 240 DD₅₀ (Amelanchier full bloom, redbud early to full bloom, Black Hills spruce bud caps splitting)

Corn Rootworm

Base temperature = 50°F Adult beetles present at 1300 DD₅₀ (Canada thistle seed ripe, Queen Anne's lace early bloom)

European Corn Borer

Base temperature = 50°F

1st spring moths at 375 DD₅₀
(Spiraea x vanhouttei in full bloom)

1st eggs at 450 DD₅₀
(Pagoda dogwood late bloom)

Peak spring moths at 631 DD₅₀
(Black locust full bloom)

1st summer moths at 1400 DD₅₀
(Mountain-ash fruit golden yellow, most Canada thistle seed ripe)

1st eggs at 1450 DD₅₀

1st egg hatch at 1550 DD₅₀

Peak summer moths at 1733 DD₅₀

Summer treatment period at 1550 – 2100 DD₅₀
(Queen Anne's lace full bloom – 1500 to goldenrod early bloom – 2100)

Fleabeetles

Base temperature = 50°F 150-200 DD₅₀ (Norway maple late bloom, Amelanchier blooming, redbud early bloom)

Imported Cabbageworm

Base temperature = 50°F Adult butterflies at 150-240 DD₅₀ (Amelanchier full bloom, redbud early to full bloom, Black Hills spruce bud caps splitting)

Onion Maggots

Base temperature = $40^{\circ}F$ 680, 1950, 3230 DD₄₀ for 1^{st} , 2^{nd} , & 3^{rd} generation flies 1^{st} generation eggs laid 230-280 DD₄₀

Squash Vine BorerBase temperature = 50°F

Egg laying at 900-1000 DD₅₀ (Chicory full bloom)

Seed Corn Maggot

Base temperature = 39°F 200, 600 for 1st and 2nd generation flies

COMMON FRUIT INSECTS THAT CAN BE MONITORED USING DEGREE DAYS OR INDICATOR PLANTS

Apple Maggot*

Base temperature = 50°F 1st adult fly emergence 900 DD₅₀ 1st egg laying 1100 DD₅₀ Peak fly emergence 1600 DD₅₀ Peak egg laying 1750 DD₅₀ End of fly emergence 2800 DD₅₀

* These degree days assume normal soil moisture. Under dry conditions, all apple maggot events will be delayed until the soil is moist.

Codling Moth

Base temperature = 50° F 1^{st} generation moth emergence 150 DD₅₀ Eggs laid 250 DD₅₀ 1^{st} generation peak moth emergence 500 DD₅₀ Peak egg laying 550 DD₅₀ 2^{nd} generation first moth emergence 1150 DD₅₀ 2^{nd} generation peak moth emergence 1600 DD₅₀ 2^{nd} generation peak egg laying 1700 DD₅₀

Obliquebanded Leafroller

Base temperature = $43^{\circ}F$

1st generation moth emergence 600 DD₄₃ 1st generation peak moth emergence 800 DD₄₃

1st generation peak egg laying 1250 DD₄₃

2nd generation moth emergence 2050 DD₄₃

2nd generation first eggs laid 2300 DD₄₃

For more information on phenology: See University of Wisconsin Garden Facts XHT1085, XHT1086 and XHT1088, or contact your county Extension agent.

@ 2002 by the Board of Regents of the University of Wisconsin System doing business as the division of Cooperative Extension of the University of Wisconsin Extension.

An EEO/Affirmative Action employer, University of Wisconsin Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer's current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law. Thanks to Michelle Miller and Susan Mahr for reviewing this document.

A complete inventory of University of Wisconsin Garden Facts is available at the University of Wisconsin-Extension Horticulture website: withort.uwex.edu.